nach oben
Meine Merkliste
Ihre Merklisteneinträge speichern
Wenn Sie weitere Inhalte zu Ihrer Merkliste hinzufügen möchten, melden Sie sich bitte an. Wenn Sie noch kein Benutzerkonto haben, registrieren Sie sich bitte im Hanser Kundencenter.

» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.
Ihre Merklisten
Wenn Sie Ihre Merklisten bei Ihrem nächsten Besuch wieder verwenden möchten, melden Sie sich bitte an oder registrieren Sie sich im Hanser Kundencenter.
» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.

« Zurück

Ihre Vorteile im Überblick

  • Ein Login für alle Hanser Fachportale
  • Individuelle Startseite und damit schneller Zugriff auf bevorzugte Inhalte
  • Exklusiver Zugriff auf ausgewählte Inhalte
  • Persönliche Merklisten über alle Hanser Fachportale
  • Zentrale Verwaltung Ihrer persönlichen Daten und Newsletter-Abonnements

Jetzt registrieren
English
Merken Gemerkt
10.11.2011

Stapelaktor mit elektroaktiven Elastomeren

Mit künstlichen Muskeln bepackt

Ein Demonstrator des neuartigen Stapelaktors als CAD-Darstellung

In stark schwingenden technischen Systemen müssen große Bewegungen ausgeglichen und gedämpft werden. Klassischerweise geschieht dies mit Elastomerbauteilen. Wissenschaftler aus dem Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt, haben sich gefragt, was wäre, wenn diese elastischen Komponenten intelligent wären und sich aktiv verformen könnten? Wenn sie Massen heben und zum Schwingen anregen könnten? Dann könnten sie viel effektiver störende Schwingungen bekämpfen, indem sie Gegenschwingungen erzeugen. Sie könnten auch aus den Schwingungen, die sie dämpfen, elektrische Energie gewinnen.

Um dieses Verhalten zu untersuchen, hat das Institut einen Stapelaktor entwickelt, der die speziellen Eigenschaften der elektroaktiven Elastomere (EAE) nutzt und völlig neue Anwendungsszenarien erschließt. Bislang gibt es allerdings wenig kommerzielle Anbieter von fertigen EAE-Komponenten und die meisten Untersuchungen wurden mit manuell gefertigten Labormustern gemacht. Daher gilt es, standardisierte, zuverlässige und für den industriellen Einsatz geeignete Systeme zu entwickeln. Wie Piezokeramiken gehören elektroaktive Elastomere zu den „smart materials“, die sich bei Anlegen eines elektrischen Felds mechanisch verformen. Im Vergleich zu Piezowandlern zeichnen sich EAE-Wandler durch vergleichsweise große Dehnungen bei deutlich geringeren Kräften aus. Je nach eingesetztem Elastomer ergeben sich unterschiedliche Kenngrößen. Die weit verbreiteten dielektrischen Silikone sind bezüglich Kraftaufbau und Dehnungsvermögen mit natürlichen Muskeln vergleichbar und werden daher oft als „artificial muscles“ bezeichnet.

In der Lösung des Fraunhofer LBF werden dünne, metallische Elektroden, die fein perforiert sind, zum Anlegen der elektrischen Spannung eingesetzt. Dadurch kann das Elastomer bei anliegendem elektrischen Feld lokal in diese Mulden entweichen, eine makroskopische Kompressibilität des Aufbaus ist gewährleistet. Durch die gute elektrische Leitfähigkeit der Elektroden können resistive Verluste weitgehend minimiert und der Aktor bei höheren Frequenzen betrieben werden. Da die Elektroden dehnstarr sind, ist eine mechanische Anbindung an die umgebende Struktur ohne Leistungsverlust möglich. Über die Lochgeometrie und die Lage der Elektroden zueinander kann die Aktorperformance gezielt eingestellt und optimiert werden. Mithilfe von numerischen Modellen und diversen Optimierungsverfahren soll so eine für den jeweiligen Einsatz optimale Geometrie berechnet und gefertigt werden. Ein solcher Wandler lässt sich prinzipiell nicht nur als Aktor nutzen, sondern auch als adaptive Steifigkeit, als Sensor- und Generatorelement.

Der Demonstrator des Instituts hat 50 aktive Schichten mit je 140 µm Schichtdicke und einer Grundfläche von 60 mm x 60 mm. Mit einer Ansteuerungsspannung von 1,5 kV sind quasistatische Dehnungen von mehreren Prozent möglich. Durch eine Reduktion der Schichtdicke ist eine zusätzliche Steigerung der Performance zu erwarten.

Diese Beiträge könnten Sie auch interessieren
MEISTGELESENE PRODUKT-NEWS
Newsletter

Sie wollen keine Kunststoffe-News verpassen?
Hier kostenlos anmelden


Beispiel-Newsletter ansehen

Patente fördern Innovationen

Patente fördern Innovationen: Bleiben Sie am Ball und finden Sie in unserer Rubrik Patente die neusten Innovationen der Kunststoffindustrie.


Zu den Patenten