nach oben
Meine Merkliste
Ihre Merklisteneinträge speichern
Wenn Sie weitere Inhalte zu Ihrer Merkliste hinzufügen möchten, melden Sie sich bitte an. Wenn Sie noch kein Benutzerkonto haben, registrieren Sie sich bitte im Hanser Kundencenter.

» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.
Ihre Merklisten
Wenn Sie Ihre Merklisten bei Ihrem nächsten Besuch wieder verwenden möchten, melden Sie sich bitte an oder registrieren Sie sich im Hanser Kundencenter.
» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.

« Zurück

Ihre Vorteile im Überblick

  • Ein Login für alle Hanser Fachportale
  • Individuelle Startseite und damit schneller Zugriff auf bevorzugte Inhalte
  • Exklusiver Zugriff auf ausgewählte Inhalte
  • Persönliche Merklisten über alle Hanser Fachportale
  • Zentrale Verwaltung Ihrer persönlichen Daten und Newsletter-Abonnements

Jetzt registrieren
English
Merken Gemerkt
18.05.2020

Forscherin untersucht Entstehung von „metallischem Glas“

Materialforschung

Forscherinnen und Forschern um Isabella Gallino ist ein fundamentaler Erkenntnissprung gelungen, der die weiteren Arbeiten nicht nur an amorphen Metallen, sondern auch weiteren glasbildenden Materialien wie Polymeren und Ionenflüssigkeiten weltweit beeinflussen wird.

Metallische Gläser sind Legierungen, die bei schnellem Abkühlen nicht kristallisieren. So erstarren ihre Atome in relativer Unordnung und verleihen dem Material damit Eigenschaften, die ganz anders sind als die eines Materials aus denselben Grundstoffen, das aber langsamer abgekühlt wurde. Was genau auf atomarer Ebene bei diesem „Glasübergang“ passiert, ist bisher nicht vollständig geklärt. Hierbei hat ein internationales Team um die Materialwissenschaftlerin Isabella Gallino von der Universität des Saarlandes nun entscheidende Fortschritte gemacht – und zugleich ein jahrzehntealtes Paradigma widerlegt. Ihre Erkenntnisse haben sie nun in der renommierten Fachzeitschrift Science Advances veröffentlicht.

Metallische Gläser / amorphe Metalle spielen eine zunehmend große Rolle in der Wissenschaft

Bei Gläsern denken die meisten Menschen, die nicht zufälligerweise Materialwissenschaftler geworden sind – und das dürfte die Mehrzahl der Menschen sein – an ihre Fensterscheiben, ihre Trinkgläser oder ihre Brillen. An Metalle hingegen denkt daran kaum jemand. Dabei spielen die so genannten metallischen Gläser oder amorphen Metalle eine zunehmend große Rolle in der Wissenschaft wie auch in der Technologie. Metallschmelzen, die binnen Sekundenbruchteilen so weit heruntergekühlt werden, dass sie schnell erstarren, wirken auf atomarer Ebene chaotisch und ungeordnet. Anders als Metallschmelzen, die langsam erstarren, bilden ihre Atome keine regelmäßige Kristallstruktur, sondern bleiben in etwa dort, wo sie während der Abkühlphase in der Schmelze bereits waren. Diese Unordnung im Aufbau verleiht dem Metallischen Glas Eigenschaften, die ganz anders sind als in einer herkömmlichen kristallinen Legierung derselben Ausgangsstoffe, die langsamer heruntergekühlt wurden. Diese Metallischen Gläser sind zum Beispiel fest wie Stahl, aber gleichzeitig elastisch wie Kunststoff.

Materialwissenschaftlerin Isabella Gallino von der Universität des Saarlandes (© Universität des Saarlandes/Ralf Busch)

Die meisten Stoffe im Universum sind amorphe Strukturen, bilden im physikalischen Sinne also eher ein „Durcheinander“ statt einer geordneten Kristallstruktur. Selbst Wasser, das auf der Erde in gefrorenem Zustand in der Natur eigentlich immer kristallin ist, ist im gesamten Universum, zum Beispiel in Kometen, bei unter -150 Grad Celsius fast ausschließlich „glasartig“ bzw. amorph vorhanden. Wissenschaftlich betrachtet ist dieser so genannte „Glasübergang“ von einer Flüssigkeit zum Feststoff also ein fundamentaler Prozess.

„Wie dieser Glasübergang allerdings genau funktioniert, ist nach wie vor nicht wirklich verstanden worden“, erklärt Isabella Gallino. Die Materialforscherin hat gemeinsam mit Kolleginnen und Kollegen aus Spanien (Dr. Daniele Cangialosi, Dr. Xavier Monnier), Frankreich (Dr. Beatrice Ruta) und Deutschland (Professor Ralf Busch, ebenfalls Universität des Saarlandes) nun in bisher ungekannter Detailgenauigkeit erforscht, was in der Zeitspanne vom flüssigen in den festen Zustand auf atomarer Ebene am Glasübergang passiert.

Unterkühlte Schmelze einer speziellen Goldlegierung durchleuchtet

Dazu haben Gallino und ihre Kollegen die unterkühlte Schmelze einer speziellen Goldlegierung mit sehr brillianter (und kohärenter) Röntgenstrahlung am European Synchrotron Research Facility in Grenoble durchleuchtet, während sie von rund 150 Grad Celsius (flüssig) auf etwa 115 Grad Celsius (glasartig) „eingefroren“ wird. Die Atome der Legierung verraten dabei, wie ihre Beweglichkeit abnimmt. Parallel dazu wurde mit einem neuartigen „Flash-Kalorimeter“, mit dem extrem hohe Heiz-, und Kühlraten realisiert werden können, der Einfrierprozess selbst untersucht. Was in - diesem „Glasübergangsbereich“ passiert, konnte bisher niemand mit dieser Genauigkeit sagen. „In diesem großen Bereich von Heiz- und Kühlraten ist das bisher noch niemandem gelungen“, erklärt Isabella Gallino, die aktuell an ihrer Habilitation arbeitet. Vor zehn Jahren wären diese Art Untersuchungen alleine aus technischen Gründen gescheitert. Weder hatten die Wissenschaftler damals die Möglichkeit, das Material mit hoch brillanter Röntgenstrahlung zu durchleuchten, noch gab es das kalorimetrische Verfahren, bei dem Umwandlungen eines Stoffes mit Raten von bis zu 100.000 Grad pro Sekunde registriert werden können. Beides ist heute möglich, und beides haben Isabella Gallino und ihre Kollegen genutzt.

In ihrem nun erscheinenden Artikel in der renommierten Fachzeitschrift „Science Advances“ konnten das Team sogar mit einem bisher gültigen Paradigma der Materialforschung aufräumen: „Bisher ist man immer davon ausgegangen, dass mit der Abnahme der atomaren Beweglichkeit in gleichem Maße die Eigenschaften der Flüssigkeit ab- und die des Feststoffes zunehmen“, erklärt Isabella Gallino. „Diese Eins-zu-eins-Korrelation ist allerdings nicht ganz korrekt“, so die Materialforscherin.

„Das liegt daran, dass die Schmelze aus ganz verschieden großen Atomen besteht“, führt sie weiter aus. „Während die großen Atome wie die Goldatome schon eingefroren sind, können sich die kleinen Atome wie Silizium noch bewegen und sich ‚zurechtruckeln‘.“ Dieses kollektive Fließen führt dazu, dass die globale Beweglichkeit zu diesem Zeitpunkt immer noch vorhanden ist, sodass sich das Material noch wie eine Flüssigkeit verhält. Erst wenn auch die kleineren Atome einfrieren, erstarrt die Flüssigkeit schießlich vollends zu einem Glas.

Damit ist den Forscherinnen und Forschern um Isabella Gallino ein fundamentaler Erkenntnissprung gelungen, der die weiteren Arbeiten nicht nur an amorphen Metallen, sondern auch weiteren glasbildenden Materialien wie Polymeren und Ionenflüssigkeiten weltweit beeinflussen wird. Denn versteht man diese entscheidende Phase des „Glasübergangs“ besser, gelingt es künftig auch besser, neue Materialien zu erschaffen bzw. das Verhalten bereits bestehender Materialien besser zu verstehen.

X. Monnier, D. Cangialosi, B. Ruta, R. Busch, I. Gallino, Vitrification decoupling from a-relaxation in a metallic glass. Sci. Adv.6, eaay1454 (2020).

Weiterführende Information
  • 04.05.2020

    IPF Dresden vergibt Innovations- und Doktorandenpreis

    Entwicklung analytischer Methoden zur Untersuchung von Mikroplastikpartikeln

    Mit dem Innovationspreis des Leibniz-Instituts für Polymerforschung Dresden e. V. (IPF) und des Vereins zur Förderung des IPF wird 2020 das Computerprogramm GEPARD zur schnellen und halbautomatischen Detektion und Identifizierung von Mikroplastikpartikeln in Umweltproben ausgezeichnet.   mehr

Diese Beiträge könnten Sie auch interessieren
keine Kommentare
Diesen Artikel kommentieren





Über die Verarbeitung Ihrer personenbezogenen Daten zum Zweck der Kommentierung von Inhalten informiert Sie unsere Datenschutzerklärung.
Newsletter
© 123RF.com/Maitree Laipitaksin

Sie wollen keine Kunststoffe-News verpassen?
Hier kostenlos anmelden


Beispiel-Newsletter ansehen

Marktbarometer

Erfahren Sie in unserem monatlichen Marktbarometer, wie sich die Kunststoff-Branche entwickelt.


Zum Marktbarometer

Kunststoffe im Automobil

Zum Special