nach oben
Meine Merkliste
Ihre Merklisteneinträge speichern
Wenn Sie weitere Inhalte zu Ihrer Merkliste hinzufügen möchten, melden Sie sich bitte an. Wenn Sie noch kein Benutzerkonto haben, registrieren Sie sich bitte im Hanser Kundencenter.

» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.
Ihre Merklisten
Wenn Sie Ihre Merklisten bei Ihrem nächsten Besuch wieder verwenden möchten, melden Sie sich bitte an oder registrieren Sie sich im Hanser Kundencenter.
» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.

« Zurück

Ihre Vorteile im Überblick

  • Ein Login für alle Hanser Fachportale
  • Individuelle Startseite und damit schneller Zugriff auf bevorzugte Inhalte
  • Exklusiver Zugriff auf ausgewählte Inhalte
  • Persönliche Merklisten über alle Hanser Fachportale
  • Zentrale Verwaltung Ihrer persönlichen Daten und Newsletter-Abonnements

Jetzt registrieren
English
Merken Gemerkt

Analyse, Modellierung und Simulation von Verschleiß auf mehreren Skalen zur Betriebsdauervorhersage von Wellendichtringen aus PTFE-Compound

Wellendichtringe aus Polytetrafluorethylen werden aufgrund ihrer allgemeinen Chemikalien-beständigkeit und hohen abdichtbaren Gleitgeschwindigkeiten immer dann eingesetzt wenn Wellendichtringe aus Elastomer versagen. Die Betriebsdauer wird dann allein durch abra- siven Verschleiß begrenzt. Bedingt durch die Molekülstruktur hat PTFE eine sehr niedrige Reibungszahl aber auch einen geringen Verschleißwiderstand. In der Dichtungstechnik wird PTFE daher nahezu immer gefüllt mit Partikeln, Plättchen oder Fasern eingesetzt. Diese Füllstoffe beeinflussen das tribologische Verhalten und verbessern den Verschleißwider-stand. Gefüllte PTFE Materialien werden als PTFE-Compound bezeichnet.

Der Hauptfokus dieser Arbeit liegt auf der numerischen Beschreibung des tribologischen Systems Wellendichtung. Es besteht aus einem PTFE-Wellendichtring, einer Stahlwelle als Gegenlauffläche und einem Schmierstoff. Das PTFE-Compound selbst, der tribologische Gegenlaufpartner, der Schmierstoff und die Betriebsbedingungen bestimmen die Reibung und den Verschleiß, sodass sie bei der Modellierung berücksichtigt werden müssen. Die Betrachtung auf lediglich einer Längenskala ist zur Beschreibung und Simulation von Reibung und Verschleiß aufgrund der komplexen Wirkzusammenhänge im Dichtsystem nicht ausreichend. Es wurde daher ein Mehrskalenansatz formuliert.Ein Bottom-Up-Ansatz beschreibt das tribologische System von der kleinsten hin zur größten Skala:

  • Das Mesomodell liegt zwischen der Nano- und der Mikroskala. Es beschreibt einen analytischen Ansatz eines energetisch motivierten Verschleißgesetzes. Das Modell berücksichtigt temperaturabhängige Druck- und Scherfestigkeiten und verwendet dimensionslose Kennwerte. Die scheinbare Reibungsenergiedichte integriert den Schmierungszustand in das Modell.
  • Das Mikromodell berechnet die thermischen Materialkennwerte über ein repräsentatives Volumenelement.
  • Das Makromodell enthält das geometrische Modell der Wellendichtung und die Verschleißalgorithmen zur Volumenreduktion. Ein Finite Elemente Ansatz koppelt das Meso- und das Mikromodell.

Als Basis für die Materialmodellierung wurden umfangreiche Untersuchungen des thermo-mechanischen Material- und tribologischen Verhaltens durchgeführt. Die Analysen der Materialzusammensetzung und der Mikrostruktur erfolgten mit einem Computertomograph. Härte- und Nanoindentermessungen wurden zur Identifikation von tribologische Kennwerten verwendet. Die temperaturabhängigen Spannungs-Dehnungszusammenhänge wurden im Zug-/ Druck- und Scherversuch an einer Universalprüfmaschine ermittelt. Ein Ring-Scheibe-Tribometer wurde zusammen mit einer Thermographie Kamera zur Messung von Reibung, Verschleiß und der Temperatur nahe dem Reibkontakt verwendet.

Die Validierung des vorgestellten Ansatzes erfolgte durch einen Vergleich von Wellendichtring-Dauerlaufversuch und dessen Simulation. Die simulierte Radialkraft und der Verschleiß stimmen sowohl im Trocken- als auch bei Schmierung mit den Experimenten überein. Das Potenzial der entwickelten Methode wurde an einer Auswahl handelsüblicher Wellendichtringe mit Spiralrille dargestellt. Der Multiskalensatz zur Verschleißsimulation und der Abschätzung der Betriebsdauer ist damit ein nützliches Werkzeug zur Wellendichtringoptimierung und Kostenreduktion im Produktentwicklungsprozess.

Read this abstract in English at Kunststoffe-international.com
 André Daubner

André Daubner
Institut für Maschinenelemente
Universität Stuttgart

Informationen

Freie Schlagwörter: Verschleiß, Verschleißsimulation, Betriebsdauervorhersage, Multiskalenansatz, Tribologie, PTFE, Polytetrafluorethylen, Dichtungstechnik, Wellendichtring
Institut / Lehrstuhl: Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart
Sprache: Deutsch
Fachgutachter: Prof. Dr.-Ing. habil. Werner Haas (Betreuer), Prof. Dr. rer. nat. Siegfried Schmauder
Erscheinungsjahr: 2014
Anbieter: Wissenschaftlicher Arbeitskreis Kunststofftechnik (WAK) / Kunststoffe.de

Weitere Informationen

Über die Dissertationsbank

In Zusammenarbeit mit dem Wissenschaftlichen Arbeitskreis Kunststofftechnik stellen wir Ihnen kostenfrei aktuelle Dissertationen aus dem Themengebiet der Kunststofftechnik zur Verfügung.


Weitere Informationen und Kontakte

Zur WAK-Homepage

Kunststoffe im Automobil

Zum Special