back to top
My wish lists
Save your wish list
If you want to add more content to your wish list, simply log in. If you do not have a user account, please register for the Hanser Customer Center.

» Do you already have a user account? Please log in here.
» Don't have a user account yet? Please register here.
Your wish lists
If you want to use your wish list during your next visit, simply log in. If you do not have a user account, please register for the Hanser Customer Center.
» Do you already have a user account? Please log in here.
» Don't have a user account yet? Please register here.

« Back

Your advantages at a glance

  • One login for all Hanser portals
  • Individual home page for faster access to preferred content
  • Exclusive access to selected content
  • Personal wish lists on all portals
  • Central management of your personal information and newsletter subscriptions

Register now
Deutsch
Bookmark Bookmarked
10-04-2017

Shape-Memory Polymer for the Reconstruction of Faces

Supporting the Growth of New Bone Tissue

Injuries, birth defects (such as cleft palates) or surgery to remove a tumor can create gaps in bone that are too large to heal naturally. Currently, the most common method for filling bone defects in the head, face or jaw (known as the cranio-maxillofacial area) is autografting. That is a process in which surgeons harvest bone from elsewhere in the body, such as the hip bone, and then try to shape it to fit the bone defect. However, the autograft is a rigid material that is very difficult to shape into these irregular defects. The use of bone putty or cement to plug gaps in the cranio-maxillofacial area is not ideal as well, since these materials become brittle when they harden.

To develop a better material, Melissa Grunlan, Ph.D., and her colleagues at Texas A&M University made a shape-memory polymer (SMP) that molds itself precisely to the shape of the bone defect without being brittle. It also supports the growth of new bone tissue. They presented their findings the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society, taking place on August 9-13, 2017.

A new material that changes shape upon heating could help heal bone lesions caused by injuries, tumor removal or birth defects, such as cleft palates. The white bar is 1 cm, or less than half an inch long. (© Melissa Grunlan)

SMPs are materials whose geometry changes in response to heat. The team made a porous SMP foam by linking together molecules of poly(ε-caprolactone), an elastic, biodegradable substance that is already used in some medical implants. The resulting material resembled a stiff sponge, with many interconnected pores to allow bone cells to migrate in and grow. Upon heating to 140 degrees Fahrenheit (60°C), the SMP becomes very soft and malleable. So, during surgery to repair a bone defect, a surgeon could warm the SMP to that temperature and fill in the defect with the softened material. Then, as the SMP is cooled to body temperature (98.6 degrees Fahrenheit or 37°C), it would resume its former stiff texture and “lock” into place.

Supporting Bone Cell Growth

The researchers also coated the SMPs with polydopamine, a sticky substance that helps lock the polymer into place by inducing formation of a mineral that is found in bone. It may also help osteoblasts, the cells that produce bone, to adhere and spread throughout the polymer. The SMP is biodegradable, so that eventually the scaffold will disappear, leaving only new bone tissue behind.

To test whether the SMP scaffold could support bone cell growth, the researchers seeded the polymer with human osteoblasts. After three days, the polydopamine-coated SMPs had grown about five times more osteoblasts than those without a coating. Furthermore, the osteoblasts produced more of the two proteins, runX2 and osteopontin, that are critical for new bone formation.

Grunlan says that the next step will be to test the SMP’s ability to heal cranio-maxillofacial bone defects in animals. “The work we’ve done in vitro is very encouraging,” she says. “Now we’d like to move this into preclinical and, hopefully, clinical studies.”

Source

American Chemical Society press release

These articles might be interesting for you
Newsletter

Would you like to subscribe to our Newsletters on plastics technology and profit from the latest information?

Subscribe here

Subscribe here