back to top
My wish lists
Save your wish list
If you want to add more content to your wish list, simply log in. If you do not have a user account, please register for the Hanser Customer Center.

» Do you already have a user account? Please log in here.
» Don't have a user account yet? Please register here.
Your wish lists
If you want to use your wish list during your next visit, simply log in. If you do not have a user account, please register for the Hanser Customer Center.
» Do you already have a user account? Please log in here.
» Don't have a user account yet? Please register here.

« Back

Your advantages at a glance

  • One login for all Hanser portals
  • Individual home page for faster access to preferred content
  • Exclusive access to selected content
  • Personal wish lists on all portals
  • Central management of your personal information and newsletter subscriptions

Register now
Deutsch
Bookmark Bookmarked
08-22-2016

Innovation Could Cut Cost of Manufacturing Plastics

Breakthrough Technology from ExxonMobil Corp. and the Georgia Institute of Technology

Scientists from ExxonMobil and the Georgia Institute of Technology have developed a potentially revolutionary new technology that could significantly reduce the amount of energy and emissions associated with manufacturing plastics. If brought to industrial scale, this breakthrough could reduce industry’s global annual carbon dioxide emissions by up to 45 million tons, which is equivalent to the annual energy-related carbon dioxide emissions of about five million U.S. homes. It could also reduce global energy costs used to make plastics by up to USD 2 billion a year.

Using a molecular-level filter, the new process, which is described in an article published Aug. 18 in the peer-reviewed journal Science, employs a form of reverse osmosis to separate para-xylene, a chemical building block for polyester and plastics, from complex hydrocarbon mixtures. The current commercial-scale process used around the world relies on energy and heat to separate those molecules. The research successfully demonstrated that para-xylene can be separated from like chemical compounds known as aromatics by pressing them through a membrane that acts as a high-tech sieve, similar to a filter with microscopic holes. Commercially practiced separations involve energy-intensive crystallization or adsorption with distillation. Globally, the amount of energy used in conventional separation processes for aromatics is equal to about 20 average-sized power plants.

The ExxonMobil and Georgia Tech team first developed a new carbon-based membrane that can separate molecules as small as a nanometer. The membrane was then incorporated into a new organic solvent reverse osmosis process, during which aromatics were pressed through the membrane, separating out para-xylene. "In effect, we’d be using a filter with microscopic holes to do what an enormous amount of heat and energy currently do in a chemical process similar to that found in oil refining,” said Mike Kerby, corporate strategic research manager at ExxonMobil.

Carbon Molecular Sieve Membranes

The carbon-based membrane developed by the ExxonMobil-Georgia Tech team is about 50 times more energy efficient than the current state-of-the-art membrane separation technology. Because the new membrane is made from a commercially available polymer, ExxonMobil believes it has potential for commercialization and integration into industrial chemical separation processes. Reverse-osmosis membranes are already widely used to desalinate seawater, consuming a fraction of the energy required by thermally driven processes. The new organic solvent reverse osmosis process is believed to be the first use of reverse osmosis with carbon membranes to separate liquid hydrocarbons.

“By applying pressure at room temperature, the membrane is able to concentrate para-xylene from a mixture at high rates and low energy consumption relative to state-of-the-art membranes,” said Ryan Lively, an assistant professor in Georgia Tech’s School of Chemical & Biomolecular Engineering and the lead researcher. “This mixture could then be fed into a conventional thermal process for finishing, which would dramatically reduce total energy input.”

The technology still faces challenges before it can be considered for commercialization and use at an industrial scale. The membranes used in the process will need to be tested under more challenging conditions, as industrial mixtures normally contain multiple organic compounds and may include materials that can foul membrane systems. The researchers must also learn to make the material consistently and demonstrate that it can withstand long-term industrial use.

These articles might be interesting for you
Newsletter

Would you like to subscribe to our Newsletters on plastics technology and profit from the latest information?

Subscribe here

Subscribe here