back to top
My wish lists
Save your wish list
If you want to add more content to your wish list, simply log in. If you do not have a user account, please register for the Hanser Customer Center.

» Do you already have a user account? Please log in here.
» Don't have a user account yet? Please register here.
Your wish lists
If you want to use your wish list during your next visit, simply log in. If you do not have a user account, please register for the Hanser Customer Center.
» Do you already have a user account? Please log in here.
» Don't have a user account yet? Please register here.

« Back

Your advantages at a glance

  • One login for all Hanser portals
  • Individual home page for faster access to preferred content
  • Exclusive access to selected content
  • Personal wish lists on all portals
  • Central management of your personal information and newsletter subscriptions

Register now
Deutsch
Bookmark Bookmarked
05-31-2017

Fabrication Technology in the Fourth Dimension

Researchers Develop New 4D Printing Process

Everybody knows 3D, but 4D? Scientists use the term 4D printing to refer to the simple production of objects that can transform their shape at different times. Researchers at ETH Zurich have now taken this approach one major step further by developing a construction principle that can produce load-bearing and predictable structures.

This object is printed flat (left) and can later be altered in two stable and load-bearing forms (middle and right) (© ETH Zurich/Tian Chen)

This object is printed flat (left) and can later be altered in two stable and load-bearing forms (middle and right) (© ETH Zurich/Tian Chen)

3D printers have become a standard fixture in many research laboratories – and now a select number of researchers are already looking to add yet another dimension to the technology: time. Kristina Shea, Head of the Engineering Design and Computing Lab at ETH Zurich, is one of these scientists. 4D printing creates moveable and shape variable objects such as flat components that can be folded into three-dimensional objects at a later point, or even objects that can change their shape as a function of external influences.

Professor Shea and her group have now taken this approach one step further by developing a construction principle that allows them to control the deformation. "The flat structures we produce do not change their configuration randomly, but rather exactly in the way we design them," says Tian Chen, a doctoral student in Shea’s group. The structures can also support weight. The ETH scientists are the first to create these kinds of load-bearing 4D printed objects.

Element with Two States

A single actuating element in its two states. It consists of a rigid (light) and elastic (dark) polymer (© Chen et al. Scientific Reports 2017)

The structural principle depends on an actuating element developed by the scientists to take on two possible states: retracted or extended. The researchers combined these elements to create more complex structures. As the individual elements can assume only one of the two specific states, the researchers can predict the stable three-dimensional form of the overall structure. This also allows structures that can take on several stable forms. And as the researchers have also developed simulation software, they can predict accurately the shapes and the force that must be applied to produce the deformation. This helps them in the design of objects.

The scientists printed their structures with a professional multi-material 3D printer, which can print objects from up to 40 different materials. The objects created by the ETH scientists comprise two of them: a rigid polymer that makes up most of the structure and an elastic polymer for the moving parts. The researchers print all parts in a single step.

The bracket, the pin and the center portion of the trusses are fabricated with a rigid plastic, and are much stiffer than the joints, which are fabricated with a compliant elastomer. The inclination angle of the truss members is set to α = tan(w0/L) = 45°, giving a joint rotation of 90°. This value is below the stability limit. To fabricate this multi-material design, the researchers utilize an inkjet 3D printer. By jetting a mixture of an elastomer-like and a rigid-plastic liquid photopolymer at different ratios, the printer is able to provide 14 materials of varying mechanical properties. At the extreme ends are two base materials named TangoBlackPlus (TB+), and VeroWhitePlus (VW+).

Efficient and Fast

"4D printing has several advantages," says Shea. "Printing a flat initial form with rigid and elastic sections in a single step is highly efficient. It would be much more complex and time-consuming to produce the three-dimensional object or assemble it from separate components." Plus, the flat structure saves space in transport and can then be deployed at the final destination. Similar approaches have been used in aerospace for quite some time now; for example, to transport structures into space in a compressed space-saving state.

Aerospace is thus one possible application for 4D printing. But the scientists are also considering the simple construction of ventilation systems, systems for opening and closing valves or medical applications, such as stents. Currently, the scientists are reconfiguring these structures by hand, but they are working on a drive for their elements that will extend the structures in reaction to temperature. They also say it might be possible to control the structures using pneumatic tubing (compressed air) or swelling materials that change shape depending on humidity.

additional links

Click here for a video of the 4D printed structure.

Source

ETH Zurich press release

These articles might be interesting for you
Newsletter

Would you like to subscribe to our Newsletters on plastics technology and profit from the latest information?

Subscribe here

Subscribe here