back to top
My wish lists
Save your wish list
If you want to add more content to your wish list, simply log in. If you do not have a user account, please register for the Hanser Customer Center.

» Do you already have a user account? Please log in here.
» Don't have a user account yet? Please register here.
Your wish lists
If you want to use your wish list during your next visit, simply log in. If you do not have a user account, please register for the Hanser Customer Center.
» Do you already have a user account? Please log in here.
» Don't have a user account yet? Please register here.

« Back

Your advantages at a glance

  • One login for all Hanser portals
  • Individual home page for faster access to preferred content
  • Exclusive access to selected content
  • Personal wish lists on all portals
  • Central management of your personal information and newsletter subscriptions

Register now
Deutsch
Bookmark Bookmarked

The Effects of SiO2 Nanoparticles in Toughened Epoxy Resins and Fiber-Reinforced Composites Made thereof

The properties of cured epoxy resins can be improved significantly by the addition of surface-modified SiO2 nanoparticles. A linear relationship between the increase of modulus respectively the fracture toughness and the addition level of nanosilica exists for most epoxy curing agents. Compressive strength and fatigue performance can be improved as well. Combining this modification with the classic toughening concept using reactive liquid rubbers or core-shell elastomers leads to so-called hybrid systems, which are characterized by both high toughness and high stiffness. The fatigue performance is improved further.

Laminates manufactured by using these modified resins exhibit improved performance as well. Regardless if glass or carbon fibers are used as reinforcing material, the relative property improvements of the laminates are much smaller. A linear relationship between the percentual increase in fracture toughness (GIc) of the cured bulk resin systems and the percentual increase of the GIc of the laminates made thereof seems to exist; with a conversion factor of 0.18. For the fatigue performance of laminates made from hybrid resins a tenfold increase in cyclic loadings upon failure can be achieved. This makes them especially suitable for highly stressed composites parts like in automotive applications.

A fast curing epoxy resins system based on DGEBA/IPD/TMD was employed to manufacture carbon fiber reinforced laminates; whose properties were investigated. The cured bulk resin systems exhibit the expected property improvements for the hybrid systems. However, the laminates based on hybrid resin systems, modified with both reactive liquid rubber and SiO2 nanoparticles, show no further improvements compared to the rubber-only modification but rather slightly lower values for GIc and GIIc. The ILSS is comparable; the residual strength after impact reduced. The agglomerates of silica nanoparticles, which were discovered, might be a potential cause. They form during the fast cure in presence of reactive liquid rubber; probably caused by the forced rapid phase separation of the rubber upon cure.

Lesen Sie die deutsche Zusammenfassung auf Kunststoffe.de
Author
 Stephan  Sprenger

Stephan Sprenger
Lehrstuhl für Polymere Werkstoffe
Universität Bayreuth

Information

Free keywords: fiber reinforced composites, GFRP, CFRP, toughened epoxy resins, silica nanoparticles, hybrid resin systems, conversion factor, KIc, GIc, fatigue
Institute / chair: Fakultät für Ingenieurwissenschaften der Universität Bayreuth
Language: English
Technical consultant for expert services: Prof. Dr.-Ing. Volker Altstädt (Betreuer), Prof. Dr.-Ing. Karl Schulte
Publication year: 2015
Provider: Wissenschaftlicher Arbeitskreis Kunststofftechnik (WAK) / Kunststoffe.de

Further Information

About the PhD Dissertation Data Base

WAK-Logo

In cooperation with the Wissenschaftlicher Arbeitskreis Kunststofftechnik (WAK), we provide free access to current dissertations in the field of plastics technology.

Further information and contact

WAK-Homepage